AuthorWrite something about yourself. No need to be fancy, just an overview. Archives
December 2017
Categories
All

Back to Blog
DIFFERENTIATION USING THE QUOTIENT RULE
The following problem requires the use of the quotient rule. The derivative of a function h(x) may be denoted by D. The quotient rule is a formal rule for differentiating problems where one function is divided by another. It follows from the limit definition of derivative and is given by:
\[D\frac{f(x)}{g(x)} = \frac{ g(x) D(f(x))  f(x) Dg(x)}{(g(x))^2}\]
Solution:
\[dy/dx = \frac{(2x + cosx) D(4sinx)  (4sinx) D(2x + cosx)}{(2x + cosx)^2}\]
\[= \frac{(2x + cosx)4cosx  4sinx(x  sinx)}{(2 + cosx)^2}\]
\[= \frac{(8xcosx + 4cos^2x)  (8xsinx  4sinx^2x)}{(2 + cosx)^2}\]
\[ = \frac{8(xcosx  sinx) + 4(cos^2x + sin^2x)}{(2 + cosx)^2}\]
We know that Sin^2x + cos^2x = 1
\[ = \frac{8(xcosx  sinx) + 4}{(2 + cosx)^2}\]
0 Comments
read more
Leave a Reply. 